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Summary

The traditional fully stressed method performs satisfactorily

for stress-limited structural design. When this method is

extended to include displacement limitations in addition to

stress constraints, it is known as the fully utilized design (FUD).

Typically, the FUD produces an overdesign, which is the

primary limitation of this otherwise elegant method. We have
modified FUD in an attempt to alleviate the limitation. This

new method, called the modified fully utilized design (MFUD)

method, has been tested successfully on a number of

problems that were subjected to multiple loads and had both

stress and displacement constraints. The solutions obtained

with MFUD compare favorably with the optimum results that

can be generated by using nonlinear mathematical program-

ming techniques. The MFUD method appears to have allevi-

ated the overdesign condition and offers the simplicity of a
direct, fully stressed type of design method that is distinctly

different from optimization and optimality criteria formula-

tions. The MFUD method is being developed for practicing

engineers who favor traditional design methods rather than
methods based on advanced calculus and nonlinear mathemati-

cal programming techniques. The Integrated Force Method

(IFM) was found to be the appropriate analysis tool in the

development of the MFUD method. In this paper, the MFUD

method and its optimality are examined along with a number of

illustrative examples.

Introduction

The fully stressed design FSD method (ref. 1) which is based

on a simple stress-ratio approach, is an elegant design tool that

is popular across the civil, mechanical, and aerospace engineer-

ing industries. However, the FSD is useful only for stress-

limited designs; it cannot properly handle the displacement

limitations that have become typical design constraints of
modern structures. When FSD is extended to handle situations

with both stress and displacement constraints, it is called the

fully utilized design (FUD). Two steps that are required to

obtain the FUD are (1) generate the FSD for stress constraints

only, and (2) then uniformly prorate it to obtain the FUD. The

constant proration factor is obtained to satisfy the single most

infeasible displacement constraint. Although the FUD thus

obtained is feasible, it can be an overdesign, which is the primary

limitation of the otherwise elegant design method. At present,

a direct design method to efficiently handle both stress and dis-

placement constraints is not available. Moreover, sustained

effort to improve FUD has not been reported in the literature.

Instead of developing a simpler tool, the designers of the 1960' s

were complicating the approach by applying nonlinear mathe-

matical programming techniques of operations research

(refs. 2 to 8) and Langrangian-based optimality criteria meth-

ods (refs. 9 to 11). Some success has been achieved in design

optimization; however, these techniques can be computationally

intensive, and convergence difficulties are frequently encoun-

tered, even for modest problems (refs. 12 and 13). Despite these

limitations, design optimization is popular in academia and is

being improved and promoted for industrial applications, espe-

cially since there is no alternate design tool that effectively

handles both stress and displacement constraints. These opti-
mization methods, to a certain extent, have yet to mature and

become a standardized design tool for utilization by practicing

engineers. Imagine the distress of these engineers at finding
that design has been made more complex by the introduction of

advanced calculus and variational techniques, without a com-

parable benefit. Although design optimization is analytically

elegant, a simpler alternative, such as FSD/FUD, need not be

abondoned, especially for routine and practical engineering

design. Further research and development needs to be done

on direct design methods that do not employ mathematical

programing techniques.

This paper outlines the development of a simple FSD/FUD

type design tool that can handle both stress and displacement

constraints simultaneously. The proposed design tool is called

the modified fully utilized design (MFUD) method. In its
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simplicity, MFUD is comparable to the FUD method, yet it

alleviates the overdesign limitation that has been associated

with the traditional FUD technique. When tested on a number

of problems, MFUD produced solutions comparable to those

generated by design optimization methods. At this early stage,

MFUD has been developed for two- and three-dimensional

trusses with linked member areas as design variables. Success-

ful completion of the MFUD method for stress and

displacement constraints will eventually open up an avenue for
the extension of this method to other types of structures and

constraints. The proponents of optimization methods can also

benefit from MFUD by using it to initiate optimization itera-

tions, thereby alleviating some of the computational burden of
such methods.

In this paper the theoretical basis of MFUD is developed and

illustrated for two examples. A summary of MFUD results,

along with optimization solutions for several examples, is
included. The Integrated Force Method (IFM, refs. 14 to 16) is

shown to be an appropriate analysis tool for deriving the MFUD

formulas (see appendix A). An analytical examination of the

optimality of FSD and FUD (see appendix B) is followed by a
discussion.

Design Optimization Problem

Standard nonlinear programming terminology is used to

formulate the design problem for trusses because solutions

obtained by the MFUD method are compared with optimiza-
tion results. The areas of truss members that can be linked for

practical purposes are considered to be design variables. The

structures are subjected to multiple load conditions, and con-

straints axe imposed simultaneously on both stresses and dis-

placements. The number of stress and displacement constraints

are denoted by.ls and Jr, respectively, with the total number of

constraints being m = Js + Jd" The.Is number of stress constraints

can be specified as

gj = -1.0_<0 j=l,2 ..... Js (1)

where t_ is the stress in thejth member and t_o is its permissible
value.

Likewise, the Jd number of displacement constraints can be
written as

gjs+j=-_--J-l.O<O, j=l,2 ..... Jd

I

(2)
AjoI

where Xj is the jth displacement component and Xjo is its per-
missible value. The stress and displacement behavior con-

straints are feasible provided that gk < O.
For a truss with n members, the weight can be considered as

the objective function for design optimization, and it can be
written as

n

W({A}) = E giPiAi
i=1

(3)

where gi, Pi, and A i are the length, density, and area of the ith
member of the truss, respectively. The computer code auto-

matically modifies equation (3) for linked design variables, but
that modification is not elaborated here.

Fully Utilized Design

The traditional FUD can be obtained in two steps: (1) gener-

ation of an FSD and (2) uniform proration of the FSD to obtain
the FUD.

An FSD for stress constraints only is generated iteratively by

using a stress-ratio technique that can be written as

A_ "k+l = A_'kRni i: 1,2 ..... n (4)

w hereAi a'k is the area of the ith member at the kth iteration (unit
member areas can be used to initiate the iterations). The factor

Rsi for the ith design variable is determined as

P_i - max(t31i' O2i ..... (ILi) (5)
_ io

where trLi represents stress in member i for load condition L,

and trio represents the yield strength of member i. The con-
verged solution of equation (4) is the FSD, designated as {A }fsd.

The FSD technique produces very fast convergence, usually in

about 10 iterations, regardless of problem size.

Prorating the FSD to satisfy the maximum violated displace-

ment constraint yields the traditional FUD for simultaneous

stress and displacement constraints:

{A}fUd={A}fSd(l+gmax)={A}fSd(-_o ) (6)

where {A }fur is the vector of member areas; gmax is the value

of the most violated displacement constraint; and Xma x and X o

are, respectively, the most violated and the allowable displace-

ment values. The uniform proration factor (1 + gmax) in equa-

tion (6) produces a feasible design. The FUD is likely to be
overdesigned because all member areas have been increased by

the same amount, and it has only one active displacement
constraint.

The overdesign condition associated with the traditional

FUD method can be illustrated by considering displacement

constraints in the design of a five-bar truss (ref. 17) (see

Numerical Examples, Example 3). The FUD method pro-

duces an optimum weight of 62.228 lb, whereas the optimality

criteria method (OC) and the Sequential Unconstrained Mini-

mization Technique (SUMT) yield 45.016 and 45.029 lb,

respectively. In this example, the traditional FUD is 38 percent
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too heavy. For this problem, the proposed MFUD produced a

weight of 44.817 lb; this is, respectively, 27.98, 0.44, and 0.47

percent lighter than the weights produced by the FUD, OC, and

SUMT methods. In the comparison of MFUD and optimization

results, more than one optimizer is used because the perfor-

mance of such methods can be problem-dependent, as is shown
in reference 12.

Modified Fully Utilized Design

The MFUD for simultaneous stress and displacement con-

straints can be obtained iteratively as follows:

Step (1): Identify the design variables to initiate the MFUD

iterations. The first MFUD iteration can begin from the

FSD {A }fsd (see eqs. (4) and (5)). For subsequent iterations, the
areas for stress constraints can be obtained from

(V/)ma 
A i - i= 1,2 ..... n (7)

aio

where (Fi)ma x is the maximum force in the ith member for all
load conditions. This strategy ensures that the final MFUD is
not biased towards the initial FSD, {A }fsd.

Step (2): Identify the vq number of violated displacement

constraints {D } = {gvl, gv2 ..... gvq } for the design obtained in
step (1).

Step (3): Update the design independently for each of the vq

violated displacement constraints contained in set {D}. (See
the section Identification of Subset of Design Variables for

a Violated Displacement Constraint, which shows how only

a few design variables need to be updated to satisfy a violated

displacement constraint.) Let the number of design variables

that should be updated to satisfy a violated displacement

constraint gvr be qt (where qt <_n is the total number of design
variables). The design update rule for the qith design variable,

then, is

Aq ivr= --qiAfSd_'Vr(l'_qt_"--+gvr ) qi = ql, q2 ..... qt (8)

where _qr < 1.0 is a weighted parameter (see the section
Member Weighted Parameter). The design variables in the

MFUD method are updated independently, in contrast to uni-

form proration in case of the traditional FUD method.

Step (4): Repeat step (3) for all vq numbers of the violated
displacement constraints to obtain vq design subsets ({A }vi,

for vi = vl, v2 ..... vq).

Step (5): Obtain the design update for the structure as the

union of the vq designs

{A} mfud = {A} vl [.J{A} v2 [_J...[,J {A} vq (9)

In the union process, the maximum value should be selected in

case of member duplication.

Step (6): Repeat steps (1) to (5) until the design converges.

The converged design will satisfy both stress and displacement

constraints. A minimum weight condition is not explicitly

imposed in the MFUD method; however, as will be shown for

the examples solved, the weight of the design calculated by the

MFUD method is very close to the optimum weight generated

from optimization methods.

The number of design variables qt that are associated with a

violated displacement constraint and the weighted parameter

_vr (see eq (8)) for each design variable can be easily identi-
ql

fied when the IFM (refs. 14 to 16) is used as the analysis tool.

The derivation of these two parameters is discussed next.

Identification of a Subset of Design Variables for a Violated

Displacement Constraint

The subset of design variables qt directly associated with a

violated displacement gvr can be identified by examining the
displacement-force relationship of IFM (see appendix A):

{X} = [J][G]{F} (10)

where {X} is the nodal displacement vector; [J] = m rows of

[S] -T, with [S] being the governing IFM matrix; [G] is the

diagonal flexibility matrix; and {F} is the internal force vector.

Because of the banded nature of matrices [J] and [G], for a

single displacement component Xvr, equation (10) can be
expanded as

j (gF)( I l+j (gF) (I 1

Xvr = vr,ql_--_)ql I Aq_l ) vr'q2_--E Jq21Aq'-_2 )

The displacement component Xvr is an explicit function of the

subset of member areas referred to by indices ql, q2 ..... qt in

equation (11). Thus it is sufficient to update qt design variables

to satisfy the violated displacement constraint gvr" Repeating

this process identifies the critical members for each violated

displacement constraint in set {D }.

Member Weighted Parameter

Instead of a uniform proration of all the design variables in

the subset qt for a violated constraint gvr' individually weighted

parameters are calculated for each design variable. The deter-

ruination of individually weighted parameters is illustrated by

the example of a 10-bar truss with a violated displacement
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constraintatitstip--node3 alongthetransversedirection
showninfigure1.Inthisexample,theviolatedtipdisplacement
canbesatisfiedmoreeffectivelybyincreasingtheareaofthe
membersnearestthesupport,suchasmembers1and5infig-
urel, ratherthantheareasofthosenearestthefreeend,suchas
members3and10.Theweightedparametersbiasthedesignin
favorofsupportmembers1and5.Theseparameterscanbe
selectedbyexaminingthesensitivitiesoftheviolateddisplace-
mentconstraints.ThesensitivityofviolateddisplacementXvr

vr
with respect to member area Aqi can be obtained via the IFM
(ref. 19) (see appendix A) as

f, /
vr, qi -- _ (12)

 Aqr t j
For the ! 0-bar truss example, the displacement sensitivities

for the four members (i.e., 1,3, 5, and 10) are

OX3 _ _X3

_A3 -1101.1 _ =-1059.2

(members near the support)

OX 3 OX 3 _

_A33 = --67.7 OAI30 -336.8

(members near the free end)

(13)

Equations (13) show that tip displacement is most sensitive to
member areas 1 and 5 (near the support) and least sensitive to

member area 3 (close to the tip). Overall, selecting a proration

factor proportional to the sensitivities is adequate in satisfying

1 2 0 3 _x

_ 360 in. -_ _ 360 in. _-_

Figure 1.--Ten-bar truss (members are circled, nodes are
not).

a violated displacement constraint. The weighted parameter for

the qith member area can be considered proportional to the

negative gradient of the violated displacement Xvr with respect

to the member area Aqyr.
To safeguard against an overdesign, the weighted parameter

should also be biased against long members with higher densi-

ties. Such a condition can be imposed from the gradient of the

objective function W with respect to member area Aqi:

3w

OAq r - Pqi_qi (14)

The gradients of the objective function with respect to

member areas 1, 3, 5, and 10 (weight density for all members

is 0.1 lb/in. 3) are

pig] = 36.0 Pse5 = 36.0

(members near the support)

(15)

P393 = 36.0 pl0_10 = 50.9

(members near the free end)

The weighted parameters can be considered inversely propor-

tional to the gradient of the objective function.

Equations (12) and (14) can be combined and normalized to
obtain the weighted parameter for the qith member area:

o()l.,'E A vr 2 vr,ql

_qr= maxII. F 21 Jvr, qml

qm = ql,q2 ..... qt (16)

Although displacement and weight sensitivities are used in the

derivation of equation (16), their calculations require trivial

computational effort since the force vector {F} and displace-
ment coefficient matrix [J] are available from analysis.

The final normalized weighted parameters for member areas
1, 3, 5, and 10 of the 10-bar truss are

{13 = 1.000 {35 = 0.962

(members near the support)

_ = 0.059 _30 = 0.216

(members near the free end)

(17)
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Theareafortheqith member of the vrth violated displace-

ment constraint can be updated by using the following formula:

Aq_r = Afs.d_vrt (1--qt "_q:-p_," + gvr) qi =ql, q2 ..... qt (18)

The preceding equation is identical to equation (8) except for a

step length tp < 1.The step length restricts member areas against
rapid changes, for which the current analysis may no longer be

valid. Default step lengths of tp = 0.5 for constraint violations

exceeding unity (i.e., gvr > 1.0) and tp = 0.25gvr for other
constraint violations were found satisfactory for most problems
that have been solved.

The design obtained from equation (18) for the displacement

component Xvr is designated by the vector {A }yr. Likewise,
areas can be obtained for all vq of the violated displacement

constraints contained in set {D}. The union of the vq area

subsets produces the area vector {A }mfud-xfor the truss. This

area is then compared with the area for stress constraints

(eq. (7)), and the final MFUD area {A }mfuafor a kth iteration is
obtained as

A mfud = max[A/Sd, A_ fud-x ] i= 1,2 ..... n (19)

The MFUD iterations are continued until convergence is

achieved for both stress and displacement constraints.

Numerical Examples

The MFUD method was applied to a number of examples.

The solutions are compared with those obtained by the tradi-
tional FUD method and with the optimum solutions generated

by several optimization algorithms, such as SUMT (ref. 20);

Sequential Quadratic Programming, SQP_IMSL (ref. 21); FD

(ref. 22); and OC (ref. 9). The MFUD process is illustrated in

detail here for the first two examples, a three-bar truss and a

cantilevered truss, under a wide range of linked displacement

constraints. For other examples, only the final results (summa-

rized) are presented.

Example 1: Three-Bar Truss

A three-bar truss with Young's modulus E = 30 000 ksi,

density = 0.10 Ib/in. 3, and allowable strength o"o = 20 ksi is

depicted in figure 2. The truss is subjected to two load condi-

tions; the first has two load components (Px = -50 kips and Py
= -100 kips), whereas the second has only one component (Px
= 50.0 kips). The truss has 10 behavior constraints, consisting

of 3 stress and 2 displacement constraints (at node 1,

Xlx <_0.2 in. and X ly _<0.05 in.) for each load case. The optimum
solution for the three-bar truss was generated by using three

_--lOOin.--_-_--lOOin.--_

2 3 4

Figure 2.--Three-bar truss (members are
circled, nodes are not).

optimizers: SUMT, FD, and OC. Initial designs of unity were

used for all design methods. The SUMT and FD optimizers

converged to optimum weights of 100.07 and 99.95 lb, respec-

tively, whereas the OC optimizer generated a slight overdesign,

reflected in a weight of 101.33 lb. The FSD (for stress con-

straints only), as determined by the stress-ratio technique, gave

A 1 = 1.182, A 2 = 2.504, andA 3 = 3.533 in.2 The FSD violated

one displacement constraint (Xly) under the first load condi-
tion. The traditional FUD, which satisfied the violated con-

straint, gave A I = 1.574, A 2 = 3.336, andA 3 = 4.706 in 2 The
FUD had only one active displacement constraint and was

overdesigned by 22.2 percent, with a weight of 122.182 lb.

The MFUD for the truss converged to an optimum weight of

99.97 Ib (see table I). The MFUD results compare well with

those generated by SUMT, FD, and OC optimizers (see

table II). The MFUD, SUMT, and FD methods yielded identi-

cal numbers of active stress and displacement constraints;

however, the OC method produced only one active stress

constraint (a one-fifth of 1-percent constraint thickness is

considered active). Overall, the MFUD method performed

satisfactorily for this problem.

The convergence characteristics of MFUD, along with those

for SUMT, FD, and OC are depicted in figure 3. MFUD

converged rapidly and monotonically in 24 reanalysis cycles

that included the 12 reanalyses to obtain the FSD. The conver-

gence characteristics for FD were rather uneven, requiring 47

reanalysis cycles to reach the optimum solution. SUMT and OC

solutions required 62 and 80 reanalysis cycles, respectively.

TABLE I.--THREE-BAR TRUSS RESULTS FOR A FEW

MFUD ITERATIONS

Iterations Weight, Member area, in. 2 Violated
lb constraint,

Xl r

A| A 7 A_
'0 91.714 1.182 2.502 3.533 0.3322

1 93.770 1.179 2.710 3.534 .2626

2 94.669 1.149 3.042 3.445 .2131

10 99.000 1.100 3.673 3.330 .0329

14 (final' 99.966 1.088 3.841 3.265 .0009

=Represents FSD.
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TABLE II.--THREE-BAR TRUSS: RELATIONSHIP OF ACTIVE STRESS AND

DISPLACEMENT CONSTRAINTS TO OPTIMUM DESIGN

Design Weight, Member area, in.2
method lb

AI A2 A3

MFUD 99.97 1.088 3.841 3.265

FUD 122.18 1.574 3.336 4.706

SUMT t00.07 1.088 3.848 3.267
FD 99.95 1.092 3.855 3.250

OC 101.33 1.053 3.913 3.345

Number of active

constraints

Stress Displacement

2 I
1

2 1

2 1

1

Number of

reanalyses

24

10

62

47

8O

150

125

100

4.m
.¢;

._m 75

50 r_ L MFUD

25 -

0 I I I I [ I I I
0 10 20 30 40 50 60 70 80

Number of reanalysis cycles

Figure 3.---Convergence history of three-bar truss.

Example 2: Cantilevered Truss With Stress and a Sequence

of Displacement Constraints

The 10-bay cantilevered steel truss shown in figure 4 is the

second example. The truss has 22 nodes and 50 members. It is
made of a material with a Young's modulus E = 30.0x106 psi,

a weight density p = 0.289 Ib/in. 3, and an allowable strength

o"o = 20",<103 psi. The truss is subjected to two load conditions.
The first is a single load of 100 kips at node 22 along the nega-

tive y-direction. The second is a load of 10 kips applied at all

nodes along the top chord (i.e., node numbers 4, 6 ..... 22; see

fig. 4). Stress constraints are considered for all 50 bars--100

stress constraints for both load conditions. Displacements along

the transverse direction are specified at the free end (nodes 21

and 22) as well as at the center span (node 11). The magnitude of

the center span displacement is specified to be a quarter of the

tip displacement. The tip displacement is a parameter that

changes, ranging in magnitude between 0.05 and 1.5 in. The
stress constraints dominate the design only when the magni-

tude of the tip displacement exceeds 1.4 in. When displace-
ments are less than 1.4 in., both stress and displacement become

active constraints. Constraint activities of final designs ob-

tained with MFUD, FUD, FD, and SQP_IMSL are given in

table III for three design situations (tip displacements of 0.5,

1.0, and 1.5 in.).

Optimum weights obtained by MFUD, FUD, and FD methods

were normalized with respect to the weight obtained by the

SQP_IMSL method, which performed best for the entire dis-

placement range 0.05 < _5< 1.5 (see fig. 5). Notice the following

observations from figure 5 and table III. The MFUD method

performs adequately for the entire displacement range, with the

error not exceeding 2 percent of the optimum solution gener-

ated by SQP_IMSL. In contrast, the maximum error in the weight

obtained by the FUD method was about 26 percent. When

stresses dominated the design (i.e., displacement values

exceeded 1.4 in.), the FD optimizer produced a 4-percent over-

design, but MFUD, FUD, and SQP_IMSL converged to the

correct optimum. In other words, the traditional FUD method

exhibited an overdesign condition when the displacements were
active constraints, but converged to the correct solutions when

the displacements became passive constraints, that is, at the FSD

condition. Optimizers SQP_IMSL and FD, and the MFUD

method provided the same number of active displacement con-

straints for the entire displacement range (see table III). The

MFUD method, however, produced a greater number of active

1

10 members at 20 in./member = 200 in.

1,4 18 20 22^^ ,".. _,_ A ao

Figure 4._antilever truss (members are circled, nodes are not). Displacement limitation
6 at center is one-fourth of that at the end.
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TABLE III.--CANTILEVERED TRUSS:
RELATIONSHIP OF ACTIVE CONSTRAINTS TO

OPTIMUM WEIGHT OF TRUSS AT VARIOUS
DISPLACEMENTS

Design method Number of active Weight,
constraints klb

Stress I Displacement
At d = 0.5 in?

MFUD 4 2 4.701
FUD 1 5.855
FD 2 4.669
SQP_IMSL 2 2 4.618

Atd= 1.0in.

MFUD 23 1 2.521

FUD - 1 2.928
FD 20 1 2.540

SQP_IMSL 21 1 2.538

Atd= 1.5 in.

M FU D 44 2.1%
FUD 44 2.1%
FD 25 2.279

SQP_IMSL 41 2.191

"d = tip displacement.

SQP-IMSL

1.40 -- _ FUD

__ _ FD1.30 0---- MFUD

"_ 1.20

_1.10

_1.00

o. Iz

0.90

0.80 I I I I I 1 I
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

Displacement constraint, 6, in.

Figure 5.--Weight normalized with respect to SQP-IMSL

as a function of displacement constraints of a cantilever
truss

stress constraints. For example, when the displacement limita-

tion was 0.5 in., the number of stress constraints produced by

MFUD, SQP_IMSL, and FD were 4, 2, and 0, respectively. For

this problem, the MFUD method produced results equal or

superior to the FUD method for all three displacement limita-

tions (0.5, 1.0, and 1.5 in.), as shown in table III. A comparison

of the weights obtained by the MFUD method and the

SQP_IMSL optimizer shows that SQP_IMSL outperforms

MFUD by 1.8 percent at a displacement of 0.5 in. and by

0.2 percent at a displacement of 1.5 in. When the displacement

value is 1.0 in., the MFUD weight is better than the SQP_IMSL

weight by 0.69 percent.

Example 3: Five-Bar Truss

The five-bar aluminum truss (refs. 17 and 18) depicted in

figure 6 was subjected to a single load and had a single displace-

ment constraint in the transverse direction at node 4. The design

parameters obtained by the four methods are summarized in

table IV. For this truss, MFUD produced results slightly superior

to SUMT and OC. The traditional FUD produced a design that

was 39 percent too heavy.

,y

100 in.

3

1 2 x

100 in.

Figure 6.---Five-bar truss (members are circled, nodes are

not).

TABLE IV.-- FIVE-BAR TRUSS DESIGN
RESULTS

Results MFUD FUD

Optimum weight, lb 44.817 62.228
Member area, in.:

A t 0.001 1.068 0.001
A2 1.475 1.501

A3 0.001 0.001
A+ 2.124 2.119

A5 0.001 , r 0.001
Active displacement

constraints 1 1

SUMT 0(2
45.029 45.016

0.001
1.499
0.001
2.120
0.001

Example 4: Tapered Five-Bar Truss

The tapered five-bar steel truss (reL 23) shown in figure 7

was subjected to two load conditions and had five stress and two

displacement constraints for each load condition. The attributes

of the designs generated by the four methods are summarized

in table V; all the optimum weights are in good agreement. The

MFUD method produced five active constraints, whereas SUMT

and OC produced three and four active constraints, respectively.
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100 "3

T 4T "
75____in.'-: L. 50iin. _ x

_" , 1 100 _ 200 300 2 400

}. 325 in. ="l

Figure 7.--Tapered five-bar truss (members arc circled,

nodes are not).

TABLE V.-- TAPERED FIVE-BAR TRUSS DESIGN
RESULTS

Results MFUD FUD SUMT OC

Optimum weight, lb 6528.72 6549.67 6541.52 6549.02
Member area, in. 2

A 1 27.16 27.38 26.23 26.47
A 2 9.37 9.42 10.37 10.33
A 3 22.04 21.91 21.35 21.23
A4 11.18 11.27 11.91 11.97
A 5 1.63 1.63 1.81 1.46

Active constraints
Stress 3 .... 2 3

Displacement 2 1 ] 1

Example 5: Ten-Bar Truss

The popular 10-bar truss (ref. 17) depicted in figure 1 was

subjected to a single load and had 10 stress and 4 displacement

constraints. Table VI summarizes the design results

obtained by the four methods. MFUD produced a weight

2 percent higher than that generated by the SUMT optimizer.

The design generated by the traditional FUD, however, was

13 percent heavier than the SUMT optimum design weight.

TABLE VI.----TEN-BAR TRUSS DESIGN RESULTS
Results MFUD FUD SUMT OC

Optimum weight, lb 5164.11 5741.21 5057.51 5061.86
Member area, in. 2

A 1 23.19 23.54

A 3 0.55 0.53
A_ 30.46 30.86
A s 7.43 7.48
Ato 21.64 21.09

Active constraints
Stress ......... 1

Displacement 2 1 2

22.97 29.11
0.33 0.36

31.50 28.58
7A3 20.78

21.58 20.03

Example 6: Tapered Ten-Bar Truss

The tapered 10-bar aluminum truss (ref. 23) depicted in

figure 8 was subjected to two load conditions, each with 10

stress and 4 displacement constraints. Table VII presents the

design results produced by the four different methods. For this

example, SQP_IMSL provided the best optimum weight; SUMT

and MFUD designs were 0.1 and 0.4 percent heavier, respec-

tively. The active constraints for MFUD, SUMT, and

SQP_IMSL numbered 5, 7, and 7, respectively.

_Y
I
I
I

I
I
I
I
I
I

75 in. I _...,,,-'_,,_- "]62.5 ifi.j_ ,v.._'(_ 15o in.

_" ',1 _100 2 200 _ 3003 400

Figure 8.--Tapered ten-truss (members arc circled,

nodes arc not).

TABLE VII.-- TAPERED TEN-BAR TRUSS DESIGN RESULTS

Results MFUD FUD SUMT SQP_IMSL

Optimum weight, lb 3272.64 3350.60 3260.75 3258.26
Member area, in. 2

A I 58.55 62.49 55.97 54.91

A 3 2.29 1.95 1.98 2.36
A_ 34.87 35.73 38.25 40.07
A s 19.67 20.11 21.15 22.28
Al0 5.84 7.27 6.78 5.29

Active constraints
Stress 3 5 5

Displacement 2 1 2 2

Example 7: Twenty-Five-Bar Truss

The 25-bar aluminum truss (ref. 7) in figure 9 was subjected

to 2 load conditions, with 25 stress and 6 displacement con-

straints for each load case. The bars' areas were linked to obtain

8 independent design variables. The attributes for the optimum
design for this truss are summarized in table VIII. SUMT, FD,

and MFUD produced comparable optimum weights; however,

the MFUD weight was 0.23 percent lighter than that of the FD

optimizer. The active constraints for MFUD, SUMT, and FD
were 8, 6, and 8, respectively. The weight generated by the
traditional FUD method was 6.4 percent heavier than that of the
FD optimizer with a single active constraint.
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TABLE VIII.-- TWENTY-FIVE-BAR TRUSS

DESIGN RESULTS

Results MFUD FUD SUMT FD

Optimum weight, lb 380.26 404.44 381.71 381.12
Member area, in. 2

A_ 0.01 0.02 0.01 0.01

m 3 2.07 2.27 2.06 2.11

A_ 0.01 0.01 0.01 0.01

A 7 1.16 1.34 1.16 1.17

A 8 1.86 1.72 1.88 1.83
Active constraints

Stress 4 - - - 2 4

Displacement 4 1 4 4

Figure 9.--Twenty five-bar truss (members are circled, nodes

are not).

Example 8: Simply Supported Truss

Figure 10 shows a 10-bay steel truss with 51 members sub-

jected to a single load. All bar areas were considered indepen-

dent variables. The results obtained for 51 stress and 2 midspan

transverse displacement constraints are summarized in table IX.

For this example, the MFUD weight lies between the optimum

weights generated by the FD and SUMT optimizers.

10 members at 20 inJmember = 200 in.

40in.
1

Figure lO.--Ten-bay truss (members are circled, nodes are not).

TABLE IX.-- SIMPLY SUPPORTED TRUSS

DESIGN RESULTS

Results MFUD FUD SUMT FD

Optimum weight, lb 734.15 808.74 719.69 782.52
Member area, in. :

A2 2.38 2.73 2.54 2.68

Ai5 3.46 4.10 3.33 4.16

A25 5.46 6.29 5.73 5.23
A35 5.23 5.98 5.03 4.99

As] 1.00 1.23 1.00 1.93
Active constraints

Stress 3 13 11

Displacement 2 2 2 2
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Example 9: Sixty-Bar Trussed Ring

A ring idealized by 60 bar members (ref. 23) subjected to 3

loads is depicted in figure 11. It has 60 stress and 6 displacement

constraints for each load case. The 60 bars' areas were linked

to obtain 25 independent design variables. Table X presents the

optimum designs obtained for the ring. For this example,

MFUD, SUMT, and FD results were in good agreement, and

the active constraints for each method numbered 19, 12, and 15,

respectively.

5 3

6 2

9 11

12

10

Figure 11 .---Sixty-bar trussed ring (members are circled, nodes are not;

R o = outer radius; R i = inner radius)°

TABLE X.-- SIXTY-BAR TRUSSED RING
DESIGN RESULTS

Results MFUD FUD SUMT FD

Optimum weight, lb 308.07 324.23 308.96 308.93
Member area, in. 2

A 5 0.59 0.63 0_58 0.57
A10 1.84 1.61 1.94 1.85
A15 0.77 0.57 0.69 0.71
A20 0.97 1.04 1.07 1.07
Az5 1.16 1.34 1.15 1.15

Active constraints
Stress 18 11 14

Displacements 1 I 1 1
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Example 10: Geodesic Dome

An aluminum geodesic dome (ref. 17) idealized by 132 bar

members and subjected to a single load is depicted in figure 12.
The areas of the bars in the dome were linked to obtain the seven

independent design variables. The designs obtained for 132

stress and i displacement constraint are given in table XI. For

this example, the MFUD weight of 119.44 Ib was lighter than

the FD weight by 5.52 Ib, but heavier than the SUMT weight by
0.8 lb. The traditional FUD weight was 560 percent heavier.

0 in.

240.0 in.

A

30.0 in.

Figure 12.--Geodesic dome (members are circled, nodes are not).

TABLE XI.-- GEODESIC DOME DESIGN RESULTS

Results MFUD FUD SUMT FD

Optimum weight, lb 119.44 676.01 118.65 124.96
Member area, in. 2

A 1 0.52 1.68 0.55 0.90

A 3 0.31 1.70 0.29 0.29

A s 0.29 1.74 0.29 0.29

A 7 0,30 1.76 0.30 0.30
Active constraints

Stress 46 - - - 46 50

Displacements 1 1 1 1
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TABLE XII.--SUMMARY OF NORMALIZED WEIGHTS

Problem

Three-bar truss

Five-bar truss

Tapered five-bar truss
Ten-bar truss

Tapered ten-bar truss

Twenty-five-bar truss

Simply supported truss

Sixty-bar trussed ring
Geodesic dome

Normalized weight

Stress and displacement
constraints

Optimum _ MFUD
1.0 1.00

1.00

1.00
1.02

1.00

1.00

1.02

1.00

_' 1.01

aNormalized with respect to optimum weight

under--

FUD

1.22

1.38

1.00

1.14

1.03

1.06

1.12

1.05

5.70

obtained by SUMT.

Stress constraints

only

Optimum FSD
1.0 1.0

1.0 1.0

Step Length and Gradient

Gradient and step length concepts are used differently in the

MFUD method and in an optimization method. In the MFUD

method, step length is a reduction factor and is assigned a value
such as t = 0.5. The factor guards against rapid change in the

updated design for which analysis may no longer be valid. Step

length in optimization is determined from a one-dimensional

search for a profile that is contrived or assumed by using local

information, including the gradient vector. The step length

reduction factor in the MFUD and the step length determination

in optimization are quite different. In the MFUD, the gradient

information is used to separate critical design variables. This

separation--and consequently gradient calculation--needs to

be carried out a few times for the entire design process: for

example, at initial design, at final design, and at some interme-

diate iterations. In optimization, gradient information is used to

generate a search direction and subsequent calculations.

Discussion

Table XII summarizes the normalized weights obtained by

SUMT, MFUD, and FUD for all nine examples with stress and

displacement constraints. Solutions for stress constraints only

were generated by using optimization and FSD methods for all

the examples and are also included in table XII. From these
results the following observations can be made:

(1) For stress constraints only, the FSD's generated by the

stress-ratio technique are identical to the optimum designs

obtained with mathematical programming techniques.

(2) For both stress and displacement constraints, designs

generated by the MFUD method are in close agreement with the

optimum designs---only 1 or 2 percent variation (which can

largely be attributed to the values of the convergence parameter

of the optimization algorithms).

(3) For stress and displacements constraints, the traditional

FUD method typically produced overdesigns as expected.

Concluding Remarks

A modified fully utilized design (MFUD) method has been

developed for the design of structures with both stress and

displacement limitations. In the development of the MFUD

method, the Integrated Force Method was found to be the

appropriate analysis tool. The MFUD method has been verified

through successful solutions of a number of design examples.

It alleviates the overdesign limitation associated with the tradi-
tional fully utilized design method. The MFUD method has the

potential to become an industrial design tool for practicing

engineers, since this simple approach can generate

designs comparable to those produced with design optimiza-
tion methods based on difficult nonlinear mathematical

programming techniques. A fully utilized design, which by
definition is a design wherein the number of active constraints

equal or exceed the number of design variables, represents the
optimum condition. The MFUD method needs to be developed

for dynamic constraints and nontruss type structures.
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Appendix A

Analysis Tool for the Modified Fully Utilized Design

Either the displacement method or the force method can be

used to develop the modified fully utilized design (MFUD)

technique. The IFM (integrated force method) offers certain

advantages in the development of MFUD. In this appendix, the

basic IFM equations are summarized, and the suitability of the

IFM for design is explored.

Equations of the Integrated Force Method

In the IFM, the n internal forces {F} are considered the

primary unknowns, and these can be obtained from the solution

of its governing equation as follows:

[S]{F} : {P*} (20)

where [S] is the n x n governing matrix, and {P*} is the

n-component thermomechanical load vector.

The m displacement components {X} can be obtained from

the forces by back-calculation as follows:

{X} = [J]{[G]{F}+ {fl}o} (21)

where [J] is the m x n deformation coefficient matrix ([J] = m

rows of [s]-T), [G] is the n x n flexibility matrix, and {fl}o is the

n component for the initial deformation vector.
Notice that the IFM provides two sets of equations (eqs. (20)

and (21)), one for the calculation of forces and another for

displacement computations. For more details on IFM, see
references 14 to 16.

Suitability of Analysis Methods for Design

The suitability of the force and the displacement methods for

the development of MFUD can be illustrated by considering the

example of a three-bar truss (fig. 2). The IFM governing

equations for forces for the three-bar truss have the following

explicit form:

o
-I -_-

(23)

where F i is the force in the ith member; fi = (C_/EiAi) is the

flexibility of the ith member for Young' s modulus E i, length gi'

and area A i; and Px and Py are the applied load components.
The two displacement components (Xi, for i = 1, 2) of the

three-bar truss can be obtained from the forces by using the

following equation:

F_r2 (1 + 1_

I X'I 1/_1 _22 733)

l,+.J:+1 q+
L

'(' 11_-r,--+,--l-
++f2 flf3

Equations of the Displacement Method

The displacement vector {X} of dimension m is the primary

unknown in the displacement method, and it can be obtained

from its governing equation

× f2 0 F2

0 f3 F3

(24)

[K]{X} = {P} (22)

where [K] is an m x m stiffness matrix, and {P} is an

m-component load vector.
Unlike the force method, the displacement method does not

provide two sets of equations, one for displacements and

another for forces. Instead, from nodal displacements a series

of operations (such as determining the field displacement func-

tion, computing the strain by differentiation, and then calculat-

ing the stress by using Hooke' s law) are carried out to determine
internal forces.

where

1 1
_,= -- + 21 + __ (25)

ftf2 Af3 Af3

Consider the design of the truss for stress limitations _roi, for

i = 1,2, 3, and displacement limitations Xoi, for i = 1,2. The two

IFM equations (eqs. (24) and (25)) can be written in terms of

member areas (A t , A 2, A3) as follows.
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Forstresslimitations:

(Y01 0 (Y02

G01 G03

-o02
OolJ5 003Y3

a/2 -o02f2 _/2

For displacement limitations:

A 2 =.

A3

(26)

(27)

A3 =e3173 (. _----_/_
E3 _X1 +X2_

In equation (27), if a displacement component X i exceeds its

allowable value Xoi, then that component should be replaced by
the allowable value.

An iterative solution of equations (26) and (27) can provide

a design for the three-bar truss that accommodates both stress

and displacement constraints. However, convergence diffi-

culty can occur if this solution is used for more general trusses.

The modified fully utilized design method developed in this

paper is more suitable for such applications.
The displacement method, on the other hand, provides only

two equations in terms of the three bar areas:

r el + e3 el 23 ]

1 [ E1Aa 4E3A--''_ 4-2E_1 F E_3+ ,,,/JXl_-{ Px}Py21_ 21 /_3 e I e= 2_ //X2/--

L E1A1 E3A3 E1AI E2A2 E3A3 J

(28)

Even for displacement constraints only, the three areas cannot

be directly determined from the solution of two stiffness

equations. The stiffness formulation is not the most appropriate

analysis tool to develop a direct design formulation.

Displacement Sensitivities

The n x m displacement sensitivity matrix [VX] required in

the MFUD method can be obtained in explicit form with the
IFM (ref. 19) as

[Vx] = [[J][C][_] - [Jl[Gl[q_]] r (29)

where

[c_] : Diag.[ F1, F2 ..... Fn ]

[--e 1 --2 2 --e nIel = Diag. EIA?' eza ..... En A2

[G]= Diag.[ gl g2 en ][_E1AI ' E2A2 ..... EnAn

(3O)

-I [0]

In the previous equation, DMg. designates a diagonal matrix,

and [C] is an (m - n) x n compatibility matrix of IFM. The

first term in equation (29) accounts for changes in member

flexibility, whereas the second term accounts for the changes in

member forces with respect to member areas. However, Berke

(ref. 9) has shown that the second term is identically equal

to zero, which has also been numerically verified. The first term

in equation (29) is equivalent to equation (12), which is used to

develop the MFUD method.
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Appendix B

Optimality of a Fully Stressed Design

A fully stressed state is reached when all members of a truss

are utilized to their full strength capabilities. Historically, such

a design was considered optimum, but recently this optimality

has been questioned because the weight of the structure is not

used in the design calculations. This appendix examines

optimality of the fully stressed design (FSD) with analytical

and graphical illustrations. Solutions for a set of examples

obtained by using FSD and optimization methods confirm the

optimality of FSD. FSD, which can be obtained with little

calculation, can be extended to displacement constraints and to

nontruss-type structures.

The optimum solution--variables (A °pt for i = 1, 2 ..... n),

minimum weight (W°Pt), and active constraints (g]Ct = 0,
j = 1, 2 ..... n)----can be obtained by using one of several

optimization methods (see refs. 13 and 29). In optimization
methods, both the weight function and the constraints partici-

pate. In FSD, only the constraints are solved iteratively to

obtain the design variables, without any reference to weight.
The FSD weight (wfsd) is back-calculated from the areas. That

FSD need not be optimum (i.e., A_isd _: A °pt for i = 1,2 ..... n,
and W fsd _- W °pt) is a popular misconception.

Introduction

Researchers are baffled by two conspicuous attributes of

FSD: the good numerical results obtainable with FSD; and the
merit function, or weight function, of the structure, which is not

taken into consideration. Optimization proponents think that

FSD need not represent the optimum since the good FSD results

are considered simply special cases. Practicing engineers
believe that when all the members of a truss (or structure) are

utilized to their full strength capabilities the design can no

longer be improved. They, however, cannot offer a mathemati-

cal proof supporting the optimality of FSD. This dilemma has

persisted since the sixties (refs. 1, and 24 to 28). Here, an

attempt is made to alleviate the confusion. The optimality of
FSD is examined in four sections: the problem is defined;

optimality is discussed; numerical examples follow; and dis-
cussions and a summary are presented.

Truss Design Problem

Consider an n-bar truss with n member areas as design

variables subjected to q load conditions. A fully stressed state

(of FSD) is reached when each members' stress equals allow-

able strength tr0. This design can be cast as the following

mathematical programming problem: Find n variables A i for

i = 1, 2 ..... n to minimize weight w = _apiliAi subjected to

nq stress constraints i:1

g i = l- _o0
i = 1, 2..... nq (31)

Optimality of the Fully Stressed Design

The Lagrangian functional obtained by adjoining the active
constraints to the weight function is used to examine the

optimality of FSD:

f_({A},{)_}):W({A})+ _ _,ig*({A}) (32)
activeset

where (*) indicates the active constraints and {_,} the multi-

pliers. The variables and the multipliers can be obtained from
its stationary condition:

VW({A})+ _ _,iVg*({A})={O}
active set

(33)

gi({A}):{O} (g* within the active set) (34)

Equations (33) and (34) yield the optimum solution.
The optimality of FSD is considered by examining three rela-

tions between the design variables and the active constraints.

Case 1: There are more active constraints than design

variables.

Case 2: There are an equal number of active constraints and

design variables.
Case 3: There are fewer active constraints than design

variables.

The three-bar truss (fig. 2) subjected to two load conditions,

with three design variables, six stress constraints, and weight as
the merit function, is used for illustration.
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Case1:MoreActiveConstraintsThanDesignVariables

Geometricalsolution.--Consideran optimum solution with

n variables and (n + v) active constraints. The optimal solution

is at the intersection of any n out of the (n + v) active constraints.

The remaining v are follower constraints passing through the

optimal point. For the truss with three design variables, assume

an optimal design with four active constraints, gl, g3, g5, and g6

(fig. 13). Three constraints (g3, gs, and gt) are sufficient to

establish the optimal point. The follower constraint (gl) can be
neglected without any consequence. From a geometrical con-
sideration, the inclusion of a maximum of n active constraints

is sufficient to establish the optimal design. The weight func-
tion is not essential when v > 0.

Analytical solution.--The (2n+v) unknowns (being n vari-

ables and (n + v) multipliers) can be determined as the solution

gl

X 3

g3 =0

- X2---

X 1

Figure 13.--Three active constraints (sufficient to
determine optional point) and two follower
constraints.

to equations (33) and (34). An uncoupled strategy is to solve for

the n design variables from any n of(n + v) constraint functions

given by equation (34). Values for other variables and the

weight function can be back-calculated. Summarizing, when

active constraints exceed design variables, the optimum can be
obtained from the solution of a set of n active constraints.

Case 2: An Equal Number of Active Constraints and

Design Variables

An optimal solution with n variables and n active constraints,
by definition, represents a fully stressed design. The stationary

condition of the Lagrangian (eqs. (33) and (34)) represent 2n

equations in 2n unknowns. The uncoupled equation (34), being

n constraint equations, can be solved for the n design variables.

The n multipliers and optimum weight can be back-calculated.
For the truss, the solution of three constraints will yield the

design variables. The optimum weight and the multipliers can

be back-calculated from equations (31) and (34) respectively.

When the number of active constraints equal or exceed the

number of design variables, the solution of the active con-

straints (i.e., eq. (34)) provides the design variables. The design

thus obtained is both fully stressed and optimum.

Case 3: Fewer Active Constraints Than Design Variables

An optimum solution with fewer active constraints than

design variables is not a fully stressed design. For the three-bar

truss, assume two active constraints (gl and g2) given by equa-
tion (34). The two constraint equations are expressed in terms

of three unknown design variables. Although equation (34) is

independent of Lagrangian multipliers, it does not have suffi-

cient quantity for a solution of the three design variables. Thus,

both equations (33) and (34), which are coupled in variables,

multipliers, and weight gradient, must be solved simulta-

neously to generate the optimum solution. The gradient of the

weight function and the multipliers are required to calculate the

design variables. In other words, only when the number of

active constraints is fewer than the number of design variables

do both the constraints and the weight function participate.

Mathematical programming methods address this situation in

particular. Practical truss design, however, more frequently falls
under Cases 1 and 2.

Design of a Truss Under a Single Load Condition

For an indeterminate truss under a single load condition, a

full stress state may not be achievable because of the compat-

ibility condition (refs. 27, 28, and 30). Take, for example, an

n-bar truss with r redundant members. If its FSD is attempted

without restricting the lower bound of the member areas, then
the design will degenerate to a determinate structure that, of

course, will be fully stressed and optimum. If, however, a mini-

mum bound A rain is specified for member areas, the resulting

design will have (n - r) fully stressed members with (n - r)
active stress constraints and r member areas that reach the

minimum bounds of A rain.These properties, from an analytical

viewpoint, become equivalent to n active constraints consisting

of (n - r) stress constraints and r lower bound side constraints.

Since there are n design variables, this example falls under

Case 2. In other words, the design of a truss under a single load

also represents the optimum design.

A fully stressed design state can be defined in terms of two
indices, Index stress and Indexall:

lndexStres s = (number of active stress constraints)

(number of independent design variables)

lndexall _ (number of active stress constraints + number of active bounds)

number of independent design variables)
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Index = maximum [Index .... , index_n

For analytical purposes, a fully stressed state is reached when
the Index > 1.

Numerical Examples

Examples are separated into a first example and a group of

problems. The first example, with several subcases, examines

the role of the weight function when the number of active con-

straints exceed or equal the number of design variables (as in

Cases 1 and 2). The second group of examples compares stress-

ratio-based FSD' s with their optimum designs. Two optimizers,

SUMT (Sequential Unconstrained Minimization Technique)

and IMSL (i.e., the Sequence of Quadratic Programming tech-

nique of IMSL) are used to solve examples in group 2. The

figures and descriptions for the examples are not given here, but
can be found in references 13 and 29. All the examples were

solved in a controlled environment on the NASA Lewis Cray

Y-MP computer.

Example 1

A three-bar truss (see fig. 2) is used to illustrate that the

weight function does not influence the optimum design when

the number of active constraints equal or exceed the number of

design variables. The truss is subjected to two load conditions

and has a total of six stress constraints, three per load condition.

The optimum solution for an aluminum truss with equal weight
densities of 0.1 lb/in. 3 for its three bars was obtained by using

several optimization algorithms. The optimum solution for the

problem is optimum weight W °pt = 133 lb; design variable
A °pt = (3.29, 3.99, 3.32) in.2; and four active stress constraints

(gl, g3, g5, and g6)"
Fully stressed design.--The stress-ratio-based FSD pro-

duced the optimum design. The weight coefficients were
changed over a wide range, from 0.1 lb/in. 3 for aluminum to

300 Ib/in. 3 for a fictitious material. The design and active con-

straints obtained by FSD remained the same since the weight

does not participate in the calculations. The FSD weight, how-
ever, was back-calculated; it is shown in table XIII.

SUMToptiraizer.--Solutions for five different weights were

attempted by SUMT (see table XIII). The SUMT optimizer

TABLE XIII._PTIMUM DESIGNS OF THREE-BAR TRUSS WITH

DIFFERENT MATERIALS

[Number of active constraints exceed number variables.]

Method Cost Member areas Active Optimum

coefficients constraints weight, lb

FSD 0.1 0.1 0.1 3.30 3.99 3.32 gLg3,gs,g6 1.33x 102

3 6 8 I 7.53x105
6 12 18 i 1.60×104

16 13 25 l 2.43×104
1 200 300 _' _ ,' 2.20x 105

SUMT 0.1 0.1 0.1 3.291 3.986 3.323 gl.g3,gs,g6 1.33x105
3 6 8 3.299 3.998 3.299 7.53 x 105

6 12 18 3.299 3.997 3.298 1.59x 104

16 13 25 3.298 3.998 3.299 2.43x104

1 200 _00 67.068 9.111 0.001 , 1.92x105

ISML 0.1 0.1 0.1 1.000 1.1300 1.000 (a) 3.83x101

3 6 8 3.299 4.000 3.299 g_,g3,g_,g_ 7.53 x 103

16 13 25 2.43xl(P

1 200 300 Z20x105

OPTMI 0.1 0.1 0.1 3.313 3.971 3.323 gl,g3,g_,g_ 1.33x10:

3 6 8 3.309 3.963 3.334 t 7.55 x 103

6 12 18 3.309 3.962 3.335 [ 1.60x l04

16 13 25 3.308 3.961 3.336 _ 2.44x 1041 200 300 3.300 3.967 3.328 2.21 x 105

SQP 0.1 0.1 0.1 2.335 2.503 2.505 (a) 9.35x10 _
3 6 8 2.334 5.32 x 103

6 12 18 2.334 1.14x104

16 13 25 2.335 1.74x10 ¢

1 200 300 2.335 . _, 1.57 x 105

OPTM2 0.1 0.1 0.1 3.199 2.556 5.102 gJ,g5 1A2x102

3 6 8 3.501 2.402 4.682 (a) 8.22x 105

6 12 18 3.635 2.353 4.563 g6 1.75xlOn

16 13 25 3.65 7 2.316 4.467 g6 2.71 x 104

1 200 300 3.684 2.336 4.512 g_ 2.39x105

_No active constraints.
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TABLE XIV.--PERFORMANCE OF FULLY STRESSED DESIGN VERSUS OPTIMIZATION METHODS

Problem Load Independent Design Normalized

condition design method weight
variables

BAR3 1 3 FSD

IMSL
SUMT

BAR5 2 5 FSD
IMSL

SUMT

BAR10 1 10 FSD

IMSL

SUMT

BAR25 2 8 FSD

IMSL

SUMT

DOME 1 12 FSD

IMSL

SUMT

RING_A 3 25 FSD

IMSL

SUMT

RING B 1 60 FSD

IMSL

SUMT

TOWER A 1 252 FSD
IMSL

SUMT

TOWER_B 2 252 FSD
IMSL

SUMT

Number of

active stress

constraints

Number of Index _ Index *_ Normalized

active side CPU time

constraints

1.000 2 1

1.000 2 1

1.000 2 1

1.000 7 0

1.000 7 0

1.000 8 0

1.000 6 4
1.000 6 4

1.001 6 4

1.000 11 3

1.000 11 3

1.001 11 3

1.000 188 5
.983 192 5

.984 192 4

1.000 40 0

.999 38 0

1.000 38 0

1.000 52 16

1.1300 52 16

1.003 52 8

1.000 117 135

.999 117 131
1.000 117 139

1.000 165 97

1.000 165 98

1.0130 165 99

1.0 0.667 1.000

1.0 .667 1.596

1.0 .667 6.263

1.4 1.400 1.000

1.4 1.400 .527

1.6 1.600 1.288

1.0 0.600 1.000

1.0 .600 1.362

1.0 .600 2.859

1.75 1.375 1.000

1.75 1.375 8.688

1.75 1.375 14.213

16.08 15.667 1.000
16.42 16.000 .743

16.33 16.000 .740

1.60 1.600 1.1]00

1.52 1.520 5.476
1.52 1.520 13.101

1.133 0.867 1.000

1.133 .867 2.882

1.0 .867 5.569

1.0 0.464 1.000

.984 .520 57.249
1.016 .551 81.442

1.040 0.655 1.000

1.044 .655 48.031

1.048 .655 59.557

converged to the optimum solution for the first four cases, pro-

ducing the correct optimum weight and an identical set of four

active constraints. For the fifth case, SUMT converged to an

eccentric local optimum design with two, instead of four, active
constraints.

IMSL optimizer.--This optimizer produced correct solu-
tions for the last four cases. For the first case, no active con-

straints were produced and the IMSL solution was unsatisfactory.

Table XIII also shows solutions obtained with other optimi-

zation methods. The FSD method provided successful solu-

tions for all five cases. The success rate for optimization
methods varied.

Example Set 2

Nine examples were solved by using FSD along with SUMT

and IMSL optimizers. The normalized results with respect to

the FSD answers are depicted in table XIV.
Consider the 25-bar truss, referred to as BAR25 in table XIV.

It is subjected to two load conditions. Its 25 areas are linked to

obtain eight independent variables. Since, at optimum, 11

stress constraints are active, a fully stressed state has been
reached. The FSD, IMSL, and SUMT methods produced iden-

tical optimum solutions for the example with different CPU

times. Optimizers IMSL and SUMT were, respectively, 10 and

18.5 times more expensive than the FSD method. Solutions to

the other eight problems followed the pattern of the 25-bar
truss, with minor variations.

Discussion

For a truss, if a fully stressed state can be reached (i.e., the

number of active constraints exceed the number of design

variables), then such a design can be handled satisfactorily with

the stress-ratio-based FSD method. Optimization techniques

for such problems can be computationaily expensive and un-

necessary.
In special circumstances a practical structural design may be

associated with fewer active constraints than design variables.

Such a design is likely to represent an overdesign condition,

which can be alleviated by relaxing some of the nonactive
constraints. If, however, there are fewer active constraints than

design variables, then the design is not fully stressed; here, non-

linear programming optimization methods can be useful. For

such problems the stress-ratio-based design can differ from the

optimum design, especially when weight densities for truss
members are different.

When the fully stressed design is extended to include dis-

placement constraints, it is called a fully utilized design (FUD).

FUD, which can produce overdesign conditions, has been

modified to give a method that produces a satisfactory design

for stress and displacement constraints (ref. 31).
The FUD method has been extended in reference 32 to

nontruss-type structures.

18 NASA TM-4743







Summary

A fully stressed design is optimum when a full stress state can

be achieved. At optimum, when the number of active con-

straints equal or exceed the number of design variables, then

such a design can be obtained by simply using a stress-ratio

algorithm without any consideration to the weight function.

The stress ratio algorithm can produce a fully stressed design in

a small fraction of the calculation time required by the design

optimization methods. The fully stressed design method may
have the potential for extension to nontruss-type structures and
nonstress constraints.
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